
Magnifique Developerʼs Guide

So, you want to develop a theme. Developers are important, Magnifique would not be
here without them. Weʼve made the theme making process as easy as possible. To
create basic theme files you do not need to know any coding whatsoever. Hereʼs how to
start.

The only real part the developer needs to do is create a “root” folder. The root folder
contains everything the theme will install. Hereʼs a basic tree map of what a root folder
CAN contain (doesnʼt have to contain everything, but this is what its possible to
contain):

root

 -- window

 --- ArtFile.bin

 --- AquaUI.bundle

 --- Extras.rsrc

 --- Extras2.rsrc

 --- LeopardUI.bundle

 --- SArtFile.bin

 -- dock

 --- <any dock resource file>

 -- custom

 --- <any custom files organized by directory structure>

 -- scripts

 --- preinstall

 --- postinstall

 --- restore

Hereʼs a real Finder picture of what this would look like:

The “window” folder = Main system (window theme), “dock” folder = Dock theme and
“custom” and “scripts” folders go together, they = custom theme. You can have one or
any combination of these 3 to use (again, not all the files have to be there, only the ones
you will use). Note that each of these 3 will be presented as options on the “Apply
Theme” dialog, and they all wonʼt just automatically installed (you can pick and
choose Dock, main system-window theme, and custom mods, choosing one, two,
or all three) Letʼs go through each of the 3 in order.

Window (main system theme).

This has the ability to install ArtFile.bin, SArtFile,bin, Extras.rsrc, Extras2.rsrc,
LeopardUI.bundle, AquaUI.bundle. You donʼt need to include all the files, only the ones
you modified. For example here is the root >> window folder of the iLeopard theme:

Just like it looks, create a “window” folder inside the root folder and put the files in there.
Note that this “window” folder will ONLY install the files mentioned above, it will not
install anything else.

Dock theme

This adds a Dock theme. Simply create a “dock” folder inside the root folder and put
your modified Dock resource files in there. Anything in the “dock” folder will be installed
to /System/Library/CoreServices/Dock.app/Contents/Resources/ overwriting any
existing files. Here is a screenshot of some of the files in a dock theme:

Custom theme

The most flexible, and also the hardest one to do. This allows you to install ANY file to
the system. 2 sections for this, placing the files, and writing scripts.

-- Placing files

For custom, files are placed in a hierarchal directory structure. For example, lets say
you had the custom file “/System/Library/CustomFile.X”. To do this you would use a
structure like this:

root

 -- custom

 --- System

 ---- Library

 ---- CustomFile.X

So basically you create the “custom” folder inside root. Then you create a System folder
inside custom, then a Library folder inside System, and then put CustomFile.X in the
Library folder. So in this method you can place as many files as you want using the
custom structure.

Now, wait. What if you want to make a modification to an app (.app), or some sort of
plugin (.plugin) or bundle (.bundle), or anything that is basically a folder that shows up
as a single file. Do you have to copy the entire thing just for a few mods? No. Say you
have Mail.app (or any app, weʼll use Mail.app as an example) and you just want to
put a file called “customicon.x” in /Applications/Mail.app/Contents/Resources. Just do
this:

root

 -- custom

 --- Applications

 ---- Mail.app

 ----- Contents

 ----- Resources

 ------- customicon.x

Basically create an empty folder called “Mail.app” inside Applications in the custom
folder. Mail.app will automatically turn into an app file with a cross over it like this:

Then right click Mail.app >> Show Package Contents. Then inside Mail.app create the
Contents folder, then inside that, create the Resources folder, and put your
“customicon.x” or whatever file in there. This same procedure can be used for bundles,
plugins, packages, anything that you can “Show Package Contents” on.

That should wrap up file placement on custom themes. Here is an example of the file
structure of iLeopardʼs custom folder:

When a custom theme is installed, the “preinstall” script will run (if there is one), then
the contents of the custom folder will be cloned onto the root drive, and then the
postinstall script will run (if there is one). What are these scripts? Thatʼs what the next
section is about

-- Writing Scripts

Because of the vast number of items a custom script can install, Magnifique requires
that developers write their own scripts if they are using the custom feature. There are 3
scripts that can be used. preinstall, postinstall, and restore. These are placed into
root/scripts/ and are run when a custom mod is installed, preinstall before copying the
custom files, postinstall after the copy, and restore runs when a custom mod is
uninstalled. These are ONLY used for “custom”. preinstall and restore are the only
ones that every custom mod should have, postinstall is just optional. Scripts are
placed in root/scripts

These script files must have NO extension (no .txt or anything) and must be named
exactly as above. TextMate is an excellent application for writing scripts, just make sure
that the files are encoded in a plain text format (no rich text) and if they have a file
extension, remove it (Right click file in Finder >> Get info >> Name and Extension--
make sure to uncheck the “Hide extension” box, then chop off the extension at the end).
The scripts are written in shell/bash script, so make sure you have a knowledge
of that (basically just Terminal commands, pasted one per line). You do not need
to worry about “sudo” as every script is run with admin privileges.

--- Preinstall script

Here is an example of a preinstall script for the iLeopard theme (commented to show
what does what).

#########SCRIPT START########

#!/bin/sh

Removes any existing iLeopard Backup folder
rm -rf "/Library/Application Support/Magnifique/Backups-Custom/iLeopard"
Makes a new iLeopard backup folder
mkdir "/Library/Application Support/Magnifique/Backups-Custom/iLeopard"
Copies Safari.app to the iLeopard Backup folder (cp with the -R flag must
be used when copying folders, apps, packages, bundles, plugins, etc.)
cp -R /Applications/Safari.app "/Library/Application Support/Magnifique/
Backups-Custom/iLeopard/"
Copies loginwindow.bundle to the backup folder, and so on to copy the rest
of the files....
cp -R /System/Library/CoreServices/SecurityAgentPlugins/loginwindow.bundle "/
Library/Application Support/Magnifique/Backups-Custom/iLeopard/"
cp -R /System/Library/PreferencePanes/Mac.prefPane "/Library/Application
Support/Magnifique/Backups-Custom/iLeopard/"
cp -R /System/Library/PreferencePanes/Keyboard.prefPane "/Library/Application
Support/Magnifique/Backups-Custom/iLeopard/"
cp -R /System/Library/PreferencePanes/Expose.prefPane "/Library/Application
Support/Magnifique/Backups-Custom/iLeopard/"
cp -R /System/Library/PrivateFrameworks/Shortcut.framework "/Library/
Application Support/Magnifique/Backups-Custom/iLeopard/"

cp -R /Applications/Mail.app "/Library/Application Support/Magnifique/
Backups-Custom/iLeopard/"
cp -R /Applications/iCal.app "/Library/Application Support/Magnifique/
Backups-Custom/iLeopard/"
cp -R /Applications/Preview.app "/Library/Application Support/Magnifique/
Backups-Custom/iLeopard/"

#########SCRIPT END########

Basically what the preinstall script does is it backups up anything that will be overwritten
by the app. Its best to backup the entire app/framework/bundle whatever rather
than just the Resources folder. As you can see, every script starts with “#!/bin/
sh” to tell the computer to use the shell interpreter to run the script. The
designated folder for Custom Backups is /Library/Application Support/Magnifique/
Backups-Custom/<your theme name> . Name your backup folder something unique so
other themes wonʼt overwrite it. Make sure to delete any existing backup folders for your
theme by:

rm -rf “/Library/Application Support/Magnifique/Backups-Custom/<your backup
folder>”

Then create the backup folder again using:

mkdir “/Library/Application Support/Magnifique/Backups-Custom/<your backup
folder>”

Also note that when using a file path with spaces in it, put QUOTES (“ “) around
the path. To copy files and folders to the backup folder just use:

cp -R <file/folder to copy> “/Library/Application Support/Magnifique/Backups-
Custom/<your backup folder>/”

Example for iLeopard:

cp -R /Applications/Safari.app "/Library/Application Support/Magnifique/Backups-
Custom/iLeopard/"

Thatʼs about it for the preinstall script! Postinstall script isnʼt required unless you want to
do post installation actions, but its the same shell script concept (you can figure that out
yourself), so onto the restore script.

-- restore script

The restore script is what runs when a theme is uninstalled. It basically restores all the
original files that were backed up in the preinstall script. PLEASE include a restore
script in your theme if you are installing custom files. Without a restore script its

extremely HARD for end users to revert back changes. Here is an example of a restore
script from iLeopard:

#########SCRIPT START########

#!/bin/sh

Copies the backup Safari.app to Applications/Safari.app. The "ditto"
command basically clones a file/folder onto another destination
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Safari.app" /Applications/Safari.app
Dittos loginwindow.bundle to /System/Library/CoreServices/
SecurityAgentPlugins/loginwindow.bundle and so on for the rest of the
files...
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
loginwindow.bundle" /System/Library/CoreServices/SecurityAgentPlugins/
loginwindow.bundle
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Mac.prefPane" /System/Library/PreferencePanes/Mac.prefPane
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Keyboard.prefPane" /System/Library/PreferencePanes/Keyboard.prefPane
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Expose.prefPane" /System/Library/PreferencePanes/Expose.prefPane
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Shortcut.framework" /System/Library/PrivateFrameworks/Shortcut.framework
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Mail.app" /Applications/Mail.app
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
iCal.app" /Applications/iCal.app
ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Preview.app" /Applications/Preview.app
Deletes the backup folder once its done. We don't want to fill up the HD
rm -rf "/Library/Application Support/Magnifique/Backups-Custom/iLeopard"

#########SCRIPT END########

The function is pretty basic. Restores the backup of a file to the system using the ditto
command:

ditto <your backup file> <destination location including the name of the file>

Example:

ditto "/Library/Application Support/Magnifique/Backups-Custom/iLeopard/
Safari.app" /Applications/Safari.app

Make sure that you put the full destination path to the app/file so not just “/Applications”
but “/Applications/Safari.app” Now at the end of the restore script, we just delete the
backup folder to save some free space:

rm -rf <backup folder>

Example:

rm -rf "/Library/Application Support/Magnifique/Backups-Custom/iLeopard"

That just about wraps up the scripts section! Remember you can include a
“postinstall” script too if you would like, but its not required and its only if you want to
do post installation actions AFTER the custom files are installed.

Put all scripts into root folder >> scripts

Here is what a scripts folder looks like:

=========================

Mix nʼ Match Method

Using the mix nʼ match method you can combine elements of different themes to create
your own customized look. This is useful to say, if you want to use the window (main
system) theme from one theme and a dock from the other. To start, create an empty
“root” folder somewhere.

Now go into /Library/Application Support/Magnifique/Themes to find your theme library.
In there right click the theme you want to take contents from and click Show Package
contents. Go into the root folder of the theme and you will see one or more of these
folders: window, dock, custom, and scripts. If you want the window (main system)
theme, copy the window folder to your empty root folder. Also if you are copying the
window folder and see file(s) called “discoreui” and “disartfile” in the root folder
of the source theme then copy those as well. If you want the dock, then copy the
dock folder to your empty root folder. If you want the custom mods, copy BOTH the
custom AND the scripts folders to your empty root folder. This way you can pick and mix
contents from different themes (window folder from one theme, dock folder from the

other, etc. Once you have your root folder all ready to go, you can use the same theme
compiling method (below) that developers use for their own themes

=========================

Compiling your theme

So you have your root folder all ready to go, with your dock, custom + scripts, and
window folders (or a combination of them). There is only one last step before making
the package. Take a preview picture of your theme (its optional, but gives much better
first impressions)! Maybe its a picture of your OS X desktop with the theme, or a Finder
window, or a collage with the different parts of the theme. The only requirement is that
the picture must be in PNG format. Once you got your root folder and picture ready to
go, open Magnifique and click Make Theme. You get a dialog like this:

Choose your root folder, give your theme a name, and enter details for Author and
Version. For the description, enter any additional information, a summary of your theme,
what it contains, etc. etc. Then select your preview PNG file. There are 2 options at the
bottom for disabling CoreUI, ArtFile, and Leopard Window Values. If your theme
requires that CoreUI or ArtFile be disabled, then check the appropriate checkbox. The
Disable Leopard Window Values checkbox is for running the “defaults write
NSGlobalDomain NSUseLeopardWindowValues NO” command (only use it if you
know what you are doing) Once you are done, click Build Theme. It will copy and set
everything up for you into a nice .mfq.plugin file. Your theme will be saved in /Library/
Application Support/Magnifique/Themes/ so if you want to distribute it, copy it from
there.

Testing

The final (and most important) step before distributing your theme to the public. The last
thing you want is a theme that messes up peoplesʼ computers, or one that just does not
work. Preferably using a spare OS X install (or your existing one, backup all important
data first in case the experiment goes wrong!!!), test applying the theme and uninstalling
as well (to test the restore script). Make sure that everything works as it should, and that
there are no side effects/errors or issues.

Distribution

Once everything is tested and working, release it out to the public! Let everyone enjoy
your creation. Hopefully this guide has been helpful on your way to developing a theme
for Magnifique, the free theme manager. Note: If you used elements from other
themes, make sure to get permission from the original authors and give credit.

